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I. Introduction

T HE surface spline presented by Harder and Desmarais [1]
ingeniously has been generally applied in aeroelastic analysis

since the comment by Rodden et al. [2], and has been a standard
method of function interpolation [3]. It is based on the small-
deflection equation of an infinite plate, and so is also called infinite-
plate spline (IPS). However, as a mathematical approach of data
fitting, it is not limited to the hypothesis of small deflection. In this
paper, we give a generalization of IPS to fit a vector value function
with arbitrary number of variables, and apply it to the deformation
interpolation of large deflection structures.

In [2], Rodden et al. presented the importance of interpolation
methods concerning the coupling of aerodynamic/structure by
quoting the words of Hitch, and reviewed the development of 2-D
interpolation methods before 1970s. After that, there are two major
progresses in the surface spline method. The first one is called the
finite-surface spline by Appa [4], which is based upon the finite
element method of a finite plate. It improves the extrapolation of the
infinite-surface spline, but it is less applicable in aeroelastic analysis.
The other is a kind of generalized IPS, named thin-plate spline (TPS),
which extends the number of variables from two to three [5], and is
applied in ZAERO [6].

The deformation of a very flexible structure has more than one
component, and so amethod to interpolate a vector function has to be
established. In this note, the data fitting method between arbitrary
dimension spaces is carried out by the further generalization of TPS.
The transformation matrix defines a mapping from the original
structure configuration to the set of displacement, or to the final
configuration. Through the interpolation, the tangentmapping can be
obtained as well to calculate the tangent or normal vectors of the
configuration. This method provides a general interpolation scheme
not limited to the structural and aerodynamic interface, but also
applicable to interpolate any smooth data and curve/surface
reconstruct.

II. Mathematical Analysis

Consider a given vector setXi � fx1i ; . . . ; xNi g (i� 1; 2; . . . ; n) in
anN-dimensional space, and the corresponding image vectorsW i �
fw1

i ; . . . ; w
M
i g (i� 1; 2; . . . ; n) in an M-dimensional space. For the

kth component ofW�X�, it can be fitted by TPSwithN variables. So,
the interpolation mapping could be written in matrix form,

W �X� � P�X�W0 (1)

where P is the transformation matrix of interpolation, which is
defined only by the given vectors Xi; the ith line ofW0 isW i.

Denote theN-dimensional space that containsXi asX, and theM-
dimensional space that containsW i asW , in an unconfused context.
From Eq. (1), a differentiable mapping from X toW is established.

According to the definition of tangent vector and tangent mapping
[7], ifX!fW, thenTX!TfTW. Here, denote u as tangent vector of
X, v as tangent vector ofW ,DW as tangent mapping ofW�X�, then,

v �DWu (2)

In a Cartesian coordinate,DW is just the Jacobian ofW�X�, that is,
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III. Application in Aeroelasticity

A. Configuration Interpolation

In static aeroelastic analysis, using the undeformed and deformed
configurations as interpolation entities is convenient. The
configuration of structure is usually considered to be embedded in
a 3-D space. The undeformed configuration could be 1-D, 2-D, or 3-
D, and the deformed configuration is usually 3-D. From (1) and (2),
the wanted grid set locations and tangent vectors of the deformed
configuration are obtained, and the normal vectors of the
aerodynamic grids and local attack angles can be calculated. Let
v1, v2 be two tangent vectors at a grid; the unit normal vector is then
calculated by the cross product of v1 and v2, that is,

�n� v1 � v2=jv1 � v2j (4)

Denote �V as the unit vector of inflow air velocity in structure
coordinate, and the local attack angle is �, then,

sin�� �V � �n (5)

B. Displacement Interpolation

For the large deflection problem, the displacement interpolation is
an alternative approach in the aeroelastic analysis, but the calculation
details are different from the configuration interpolation. In this case,
the displacement of structure is given by (1), and the deformed
configuration Y is

Y �X�W (6)
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In principal, the dimension ofX andW may be different. In (6),X,
Y, andW are embedded in the structure space with three dimensions.
So, the tangent mapping from the undeformed to the deformed
configuration is modified as

v � �I�DW�u (7)

where I is the identity matrix. The unit normal vector and the local
attack angle are calculated by (4) and (5).

C. Force Interpolation

In aeroelastic analysis, the transformation between the
aerodynamic and the structural force systems requires structure
equivalence rather than static equivalence. Structure equivalence
means that the two force systems deflect the structure equally [3].
When the aerodynamic forces Fa and their equivalent structure
forces Fs do the same virtual work on their virtual deflections,
respectively, the structure equivalence of two force systems is
guaranteed:

�UTaFa � �UTsFs (8)

where �Ua and �Us are the virtual deflections, respectively,
satisfying Eq. (1), that is, �Ua � P�X��Us. So,

F s � P�X�TFa (9)

IV. Numerical Example

Consider the in-plane deformation of a virtual beam with unit
length, whose deformed configuration is a circle of unit diameter.

The exact original and final shapes are

X : x 2 �0; 1�; W: �w1; w2� � �sin�2�x�=2; 1 	 cos�2�x�=2�
(10)

respectively. Eleven nodes are uniformly distributed on the origin
line; their corresponding final locations are given to fit the circle. The
interpolation coefficients are hi � 0 and "� 0:1. Define the error
function of the shape interpolation as

err w � jW 	 �Wj=j �W 	 �0; 0:5�j (11)

Define the error function of the tangent vector as

err v � jv 	 �vj=j �vj (12)

where W and v are the interpolation values; �W and �v are
corresponding exact values.

Figures 1 and 2 plot the fitting circle and the tangent vectors at 41
grids with equal intervals. The interpolation precision is quite high,
with location errors below 0.6%, and tangent vector errors below
6.5%. In Fig. 1, the output points are almost exact at the uniformly
distributed points on the circle. In Fig. 2, the computed vectors have
acceptable precision, but the vectors near edges are getting worse.

Figure 1 also plots some extrapolating points, which illustrate that
the trustiness margin of extrapolation is quite small. The tangent
vectors of extrapolating points are not plotted in Fig. 2, but Fig. 1
shows the tangent orientations trend to constant.

V. Conclusions

The generalized method based on the standard IPS is established
for vector value function interpolation, and the numerical scheme for
structure configuration characters is deducted through a simple
differential geometry method. A 2-D example shows its availability
and good precision. The method is easily applicable to the higher-
dimensional problems. The general IPS can easily amalgamate into
the frame of aeroelastic analysis to solve the structural and
aerodynamic interface problems as standard IPS and TPS do. It can
also be employed straightforwardly to interpolate any vector value
functions, such as displacement, the gradient of scalar field, etc.
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Fig. 1 Shape interpolating results include some extrapolations.
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Fig. 2 Tangent vector results.
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